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Abstract The purpose of this paper is to generalize the concept of α-well-posedness to the
symmetric quasi-equilibrium problem. We establish some metric characterizations of α-well-
posedness for the symmetric quasi-equilibrium problem. Under some suitable conditions, we
prove that the α-well-posedness is equivalent to the existence and uniqueness of solution for
the symmetric quasi-equilibrium problems. The corresponding concept of α-well-posedness
in the generalized sense is also investigated for the symmetric quasi-equilibrium problem
having more than one solution. The results presented in this paper generalize and improve
some known results in the literature.
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1 Introduction

The notion of well-posedness for an optimization problem was first introduced by Tykhonov
[36], already known as Tykhonov well-posedness, which means the existence and uniqueness
of solution, and the convergence of every minimizing sequence toward the unique solution.
However, in many practical situations, the solution may not be unique for an optimiza-
tion problem. Thus, the concept of well-posedness in the generalized sense was introduced,
which means the existence of solutions and the convergence of some subsequence of ever
minimizing sequence toward a solution. In the following years, well-posedness has received
much attention due to it plays an important role in the stability theory for optimization prob-
lems. A large number of results about well-posedness have appeared in the literature, see,
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e.g., [2,6,8,12,14–17,32,38,39], where Refs. [2,8,12,15,38,39] are for the class of scalar
optimization problems, Refs. [6,14,16,32] for the class of vector optimization problems.

In recent years, the concept of well-posedness has been generalized to variational inequal-
ity problems [5,4,7,11,17,18,23–25,28], Nash equilibrium problems [25,26,29,30,33,37],
inclusion problems [4,11,21], and fixed point problems [4,11,13,21,35]. In particular, Lucch-
etti and Patrone [28] first introduced the notion of well-posedness for a variational inequality
by using Ekeland’s variational principle. Lignola and Morgan [24] introduced the parametric
well-posedness for a family of variational inequalities. Lignola [23] further introduced the
notions of well-posedness and L-well-posedness for quasivariational inequalities and derived
some metric characterizations of well-posedness. At the same time, Del Prete et al. [7] intro-
duced the concept of α-well-posedness for a class of variational inequalities. Recently, Fang
et al. [11] generalized the concept of well-posedness to a class of mixed variational inequali-
ties in Hilbert spaces. They obtained some metric characterizations of its well-posedness and
established the links with the well-posedness of inclusion problems and fixed point prob-
lems. Very recently, Ceng and Yao [4] generalized the results of Fang et al. [11] to a class of
generalized mixed variational inequalities in Hilbert spaces. Ceng et al. [5] studied the well-
posedness for a class of mixed quasivariational-like inequalities in Banach spaces. For the
well-posedness of variational inequalities with functional constraints, we refer to Huang and
Yang [17] and Huang et al. [18]. On the other hand, in 2006, Lignola and Morgan [26] pre-
sented the notion of α-well-posedness for the Nash equilibria problem and gave some metric
characterizations of this type well-posedness. Petrusel et al. [35] and Fuster et al. [13] dis-
cussed the well-posedness of fixed point problems for multivalued mappings in metric spaces.

It is well known that the equilibrium problem provides a general mathematical model for
a wide range of practical problems, which includes as special cases optimization problems,
Nash equilibria problems, fixed point problems, variational inequality problems and com-
plementarity problems (see, e.g., [3,22]), and has been investigated intensively. It is worth
mentioning that one can equivalently transform a equilibrium problem into a minimizing
problem by using gap function and some numerical methods have been developed to solve
the equilibrium problem (see, e.g., [31]). This fact motivates researchers to study the well-
posedness for equilibrium problems. Recently, Fang et al. [10] introduced the concepts of
parametric well-posedness for equilibrium problems and derived some metric characteriza-
tions for these types of well-posedness. For the well-posedness of equilibrium problems with
functional constraints, we refer readers to [27]. However, to the best of our knowledge, there
are no results concerned with the problems of the well-posedness for symmetric quasi-equi-
librium problems in Banach spaces.

Motivated and inspired by the works mentioned above, in this paper, we generalize the
concept of α-well-posedness to symmetric quasi-equilibrium problems which includes equi-
librium problems, Nash equilibrium problems, quasivariational inequalities, variational
inequalities and fixed point problems as special cases. Some metric characterizations of
α-well-posedness for symmetric quasi-equilibrium problems are given under some suitable
conditions. Moreover, we give some examples to illustrate our results. The results presented
in this paper generalize and improve some known results due to Ceng et al. [5], Ceng and
Yao [4], Fang et al. [10], Fang et al. [11], Lignola [23], and Lignola and Morgan [26].

2 Preliminaries

Throughout this paper, unless specified otherwise, let X and Y be two real Banach spaces,
and let C ⊆ X and D ⊆ Y be two nonempty closed and convex subsets. Let S : C × D → 2C
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and T : C × D → 2D be two set-valued mappings and let f, g : C × D → R be two real
functions. Suppose that α is a non-negative real number and N = {1, 2, . . .}.

In this paper, we consider the following symmetric quasi-equilibrium problem (in short,
SQEP) consists in finding a point (x0, y0) ∈ C × D such that,

x0 ∈ S(x0, y0) and f (x0, y0) ≤ f (z, y0), ∀z ∈ S(x0, y0),

y0 ∈ T (x0, y0) and g(x0, y0) ≤ g(x0, w), ∀w ∈ T (x0, y0).

This problem was first considered by Noor and Oettli [34], which includes equilibrium
problems [3], Nash equilibrium problems [9], quasivariational inequalities [1], variational
inequalities [19] and fixed point problems [13,35] as special cases.

It is worth mentioning that Noor and Oettli [34] only established the existence of solu-
tions for (SQEP). Our aim in this paper is to investigate the α-well-posedness for (SQEP) in
Banach spaces.

Denote by � the solution set of (SQEP). In the sequel we will introduce the notions of
α-approximating sequence and of α-well-posedness for (SQEP).

Definition 2.1 A sequence {(xn, yn)} ⊂ C × D is called an α-approximating sequence for
(SQEP) iff, there exists a sequence εn > 0 with εn → 0 such that,

d(xn, S(xn, yn)) ≤ εn, i.e., xn ∈ B(S(xn, yn), εn), ∀n ∈ N ,

d(yn, T (xn, yn)) ≤ εn, i.e., yn ∈ B(T (xn, yn), εn), ∀n ∈ N ,

and

f (xn, yn) − f (z, yn) ≤ εn + α

2
‖xn − z‖2, ∀z ∈ S(xn, yn), ∀n ∈ N ,

g(xn, yn) − g(xn, w) ≤ εn + α

2
‖yn − w‖2, ∀w ∈ T (xn, yn), ∀n ∈ N ,

where B(S(x, y), ε) denotes the ball of radius ε around S(x, y), that is, the set {m ∈ X :
d(S(x, y), m) = infb∈S(x,y) ‖m −b‖ ≤ ε}. When α = 0, we say that the sequence {(xn, yn)}
is an approximating sequence for (SQEP).

Definition 2.2 SQEP is said to be α-well-posed if it has a unique solution (x0, y0) and for
every α-approximating sequence {(xn, yn)} strongly converges to (x0, y0). When α = 0, we
say that (SQEP) is well-posed.

Definition 2.3 SQEP is said to be α-well-posed in the generalized sense if the solution set
� of (SQEP) is nonempty and for every α-approximating sequence {(xn, yn)} has a subse-
quence which strongly converges to some point of �. When α = 0, we say that (SQEP) is
well-posed in the generalized sense.

In order to investigate the α-well-posedness for (SQEP), we need the following definitions.

Definition 2.4 [20] The Painlevé–Kuratowski limits of a sequence {Hn} ⊆ X are defined by

lim inf
n

Hn = {y ∈ X : ∃yn ∈ Hn, n ∈ N , with lim
n

yn = y},
lim sup

n
Hn = {y ∈ X : ∃nk ↑ +∞, nk ∈ N , ∃ynk ∈ Hnk , k ∈ N , with lim

k
ynk = y}.

Definition 2.5 [20] A set-valued mapping F from a topological space (W, τ ) to a topological
space (Z , σ ) is called
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(i) (τ, σ )-closed if for every x ∈ K , for every sequence {xn} τ -converging to x , and
for every sequence {yn} σ -converging to a point y, such that yn ∈ F(xn), one has
y ∈ F(x), i.e.,

F(x) ⊇ lim sup
n

F(xn).

(ii) (τ, σ )-lower semicontinuous if for every x ∈ K , for every sequence {xn} τ -converg-
ing to x , and for every y ∈ F(x), there exists a sequence {yn} σ -converging to y,
such that yn ∈ F(xn) for n sufficiently large, i.e.,

F(x) ⊂ lim inf
n

F(xn).

(iii) (τ, σ )-subcontinuous on K , if for every sequence {xn} τ -converging in K , every
sequence {yn}, such that yn ∈ F(xn), has a σ -convergent subsequence.

Definition 2.6 [20] Let A be a nonempty subset of X . The measure of non-compactness µ

of the set A is defined by

µ(A) = inf

{
ε > 0 : A ⊆

n⋃
i=1

Ai , diamAi < ε, i = 1, 2, . . . , n

}
,

where diam means the diameter of a set.

Definition 2.7 [20] Let (X, d) be a metric space and let A, B be nonempty subsets of X .
The Hausdorff distance H(·, ·) between A and B is defined by

H(A, B) = max{e(A, B), e(B, A)},
where e(A, B) = supa∈A d(a, B) with d(a, B) = infb∈B ‖a − b‖. Let {An} be a sequence
of nonempty subsets of X . We say that An converges to A in the sense of Hausdorff distance
if H(An, A) → 0. It is easy to see that e(An, A) → 0 if and only if d(an, A) → 0 for all
selection an ∈ An . For more details on this topic, we refer the readers to [20].

Now, we prove the following lemma.

Lemma 2.1 Suppose that set-valued mappings S and T are nonempty convex-valued, the
function f (·, y) is convex on C for any y ∈ D, and the function g(x, ·) is convex on D for
any x ∈ C. Then (x0, y0) ∈ � if and only if the following two conditions hold:

x0 ∈ S(x0, y0), f (x0, y0) ≤ f (z, y0) + α

2
‖x0 − z‖2, ∀z ∈ S(x0, y0), (2.1)

y0 ∈ T (x0, y0), g(x0, y0) ≤ g(x0, w) + α

2
‖y0 − w‖2, ∀w ∈ T (x0, y0). (2.2)

Proof The necessity is obvious. For the sufficiency, suppose that (2.1) and (2.2) hold. Now we
deduce that (x0, y0) ∈ �. In fact, let z1 ∈ S(x0, y0) and for any t ∈ [0, 1], zt = t z1+(1−t)x0.
Since S(x0, y0) is convex, zt ∈ S(x0, y0) and so

f (x0, y0) ≤ f (zt , y0) + α

2
‖x0 − zt‖2, ∀t ∈ (0, 1].

By the convexity of f (·, y) for any y ∈ D,

f (x0, y0) ≤ t f (z1, y0) + (1 − t) f (x0, y0) + α

2
t2‖x0 − z1‖2, ∀t ∈ (0, 1],
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which implies that

t f (x0, y0) ≤ t f (z1, y0) + α

2
t2‖x0 − z1‖2, ∀t ∈ (0, 1].

Thus, dividing by t in above inequality, we have

f (x0, y0) ≤ f (z1, y0) + α

2
t‖x0 − z1‖2, ∀t ∈ (0, 1], ∀z1 ∈ S(x0, y0). (2.3)

By the similar arguments,

g(x0, y0) ≤ g(x0, w1) + α

2
t‖y0 − w1‖2, ∀t ∈ (0, 1], ∀w1 ∈ T (x0, y0). (2.4)

The combination of (2.3) and (2.4) implies, for t converging to zero, that (x0, y0) is a solution
of (SQEP). This completes the proof. �


3 Metric characterizations of α-well-posedness for (SQEP)

In this section, we shall investigate some metric characterizations of α-well-posedness for
(SQEP) defined in section 2.

For any ε > 0, the α-approximating solution set of (SQEP) is defined by

Mε =
{

(x0, y0)

∈ C × D

∣∣∣∣ x0 ∈ B(S(x0, y0), ε), f (x0, y0) − f (z, y0) ≤ ε + α
2 ‖x0 − z‖2, ∀z ∈ S(x0, y0)

y0 ∈ B(T (x0, y0), ε), g(x0, y0) − g(x0, w) ≤ ε + α
2 ‖y0 − w‖2, ∀w ∈ T (x0, y0)

}
.

Theorem 3.1 SQEP is α-well-posed if and only if the solution set � of (SQEP) is nonempty
and

lim
ε→0

diam Mε = 0. (3.1)

Proof Suppose that (SQEP) is α-well-posed. Then, � is a singleton point set, and Mε �= ∅
for any ε > 0, since � ⊂ Mε. Suppose by contradiction that

lim
ε→0

diamMε > β > 0.

Then there exists εn > 0 with εn → 0, and (wn, zn), (wn, zn) ∈ Mεn such that

‖(wn, zn) − (wn, zn)‖ > β, ∀n ∈ N .

Since (wn, zn), (wn, zn) ∈ Mεn , and (SQEP) is α-well-posed, the sequence {(wn, zn)} and
{(wn, zn)}, which are both α-approximating sequences for (SQEP), strongly converge to the
unique solution (x0, y0), and this gives a contradiction. Therefore, (3.1) holds.

Conversely, let (3.1) hold and {(xn, yn)} be an α-approximating sequence for (SQEP).
Then, there exists a sequence εn > 0 with εn → 0 such that

d(xn, S(xn, yn)) ≤ εn, and f (xn, yn) − f (z, yn) ≤ εn + α

2
‖xn − z‖2, ∀z ∈ S(xn, yn),

d(yn, T (xn, yn)) ≤ εn, and g(xn, yn) − g(xn, w) ≤ εn + α

2
‖yn − w‖2, ∀w ∈ T (xn, yn).

This implies that {(xn, yn)} ⊂ Mεn , ∀n ∈ N . Let (x0, y0) be the unique solution of (SQEP).
Note that (x0, y0) ∈ Mεn . This fact together with (3.1) yields
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‖(xn, yn) − (x0, y0)‖ ≤ diamMεn → 0.

Thus, (SQEP) is α-well-posed. This completes of the proof. �

Theorem 3.2 Assume that the following conditions hold:

(i) set-valued mappings S and T are nonempty convex-valued, (s, w)-closed, (s, s)-lower
semicontinuous and (s, w)-subcontinuous on C × D;

(ii) functions f and g are continuous on C × D;
(iii) for any y ∈ D, the function f (·, y) is convex on C; for any x ∈ C, the function g(x, ·)

is convex on D.

Then, (SQEP) is α-well-posed if and only if

Mε �= ∅, ∀ε > 0, and lim
ε→0

diam Mε = 0. (3.2)

Proof The necessity has been proved in Theorem 3.1. For the sufficiency, let condition
(3.2) hold. It is easy to see that condition (3.2) implies that � is a singleton point set. Let
{(xn, yn)} ⊂ C × D be α-approximating sequence for (SQEP). Then there exists a sequence
εn > 0 with εn → 0 such that

d(xn, S(xn, yn)) ≤ εn, and f (xn, yn) − f (z, yn) ≤ εn + α

2
‖xn − z‖2, ∀z ∈ S(xn, yn),

d(yn, T (xn, yn)) ≤ εn, and g(xn, yn) − g(xn, w) ≤ εn + α

2
‖yn − w‖2, ∀w ∈ T (xn, yn).

This means {(xn, yn)} ⊂ Mεn , ∀n ∈ N . It follows from (3.2) that {(xn, yn)} is a Cauchy
sequence and converges to a point (x0, y0) ∈ C × D. In order to obtain that (x0, y0) solves
(SQEP), we start to prove that

d(x0, S(x0, y0)) ≤ lim inf
n

d(xn, S(xn, yn)) ≤ lim
n

εn = 0.

Indeed, suppose that the left inequality dose not hold. Then there exists a positive number γ

such that

lim inf
n

d(xn, S(xn, yn)) < γ < d(x0, S(x0, y0)),

or equivalently, there exist an increasing sequence {nk} and a sequence {zk}, zk ∈ S(xnk , ynk ),
∀k ∈ N such that

‖xnk − zk‖ < γ, ∀k ∈ N .

Since the set-valued mapping S is (s, w)-closed and (s, w)-subcontinuous, the sequence {zk}
has a subsequence, still denoted {zk}, weakly converging to a point z0 ∈ S(x0, y0). It follows
that

γ < d(x0, S(x0, y0)) ≤ ‖x0 − z0‖ ≤ lim inf
k

‖xnk − zk‖ < γ.

We obtain a contradiction. Thus x0 ∈ S(x0, y0). Similarly, we can prove y0 ∈ T (x0, y0).
To complete the proof, consider an arbitrary z ∈ S(x0, y0). Since S is (s, s)-lower semi-

continuous, there exists a sequence {zn} strongly converging to z, such that zn ∈ S(xn, yn)

for n sufficiently large. It follows from condition (ii) that

f (x0, y0) = lim
n

f (xn, yn)

≤ lim
n

( f (zn, yn) + εn + α

2
‖xn − zn‖)

= f (z, y0) + α

2
‖x0 − z‖,
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for all z ∈ S(x0, y0). Analogously, we have

g(x0, y0) ≤ g(x0, w) + α

2
‖y0 − w‖, ∀w ∈ T (x0, y0).

It follows from Lemma 2.1 that (x0, y0) ∈ �. Therefore, (SQEP) is α-well-posed. This
completes of the proof. �


To illustrate Theorem 3.2, we give the following two examples.

Example 3.1 Let X = Y = C = D = R. Let S(x, y) = [−|x |, |x |], T (x, y) = [−|y|, |y|],
f (x, y) = x2 − y2 and g(x, y) = y2 − x2 for all x ∈ C, y ∈ D. Obviously, the conditions
(i)–(iii) of Theorem 3.2 are satisfied. Note that{

(x, y) ∈ C × D : d(S(x, y), x) ≤ ε, f (x, y) − f (z, y) ≤ ε + α

2
‖x − z‖2, ∀z ∈ S(x, y)

}
=

{
(x, y) ∈ C × D : d(S(x, y), x) ≤ ε, x2 − z2 ≤ ε + α

2
(x − z)2, ∀z ∈ S(x, y)

}

=
{

(x, y) ∈ C × D : d(S(x, y), x) ≤ ε, −(2+α)

(
z − αx

2+α

)2
+ 4

2+α
x2 − 2ε ≤ 0, ∀z ∈ S(x, y)

}

=
[
−

√
(2 + α)ε

2
,

√
(2 + α)ε

2

]
× R

and{
(x, y) ∈ C × D : d(T (x, y), y) ≤ ε, g(x, y) − g(x, w) ≤ ε + α

2
‖y − w‖2, ∀w ∈ T (x, y)

}
=

{
(x, y) ∈ C × D : d(T (x, y), y) ≤ ε, y2 − w2 ≤ ε + α

2
(y − w)2, ∀w ∈ T (x, y)

}

=
{

(x, y) ∈ C × D : d(T (x, y), y) ≤ ε, −(2+α)

(
w− αy

2+α

)2
+ 4

2+α
y2−2ε ≤ 0, ∀w ∈ T (x, y)

}

= R ×
[
−

√
(2 + α)ε

2
,

√
(2 + α)ε

2

]
.

It follows that

Mε =
[
−

√
(2 + α)ε

2
,

√
(2 + α)ε

2

]
×

[
−

√
(2 + α)ε

2
,

√
(2 + α)ε

2

]

and so diamMε → 0 as ε → 0. By Theorem 3.2, (SQEP) is α-well-posed.

Example 3.2 Let C = D = [0,+∞). Let S(x, y) = [0, x], T (x, y) = [0, y] and f (x, y) =
g(x, y) = −xy for all x ∈ C, y ∈ D. It is easy to see that the conditions (i)–(iii) of Theorem
3.2 are satisfied, and Mε = [0,+∞) × [0,+∞). But, (SQEP) is not α-well-posed, since
diamMε � 0 as ε → 0.

When α = 0, we have the following result.

Corollary 3.1 Assume that the following conditions hold:

(i) set-valued mappings S and T are nonempty convex-valued, (s, w)-closed, (s, s)-lower
semicontinuous and (s, w)-subcontinuous on C × D;

(ii) functions f and g are continuous on C × D.

Then, (SQEP) is well-posed if and only if

Mε �= ∅, ∀ε > 0, and lim
ε→0

diamMε = 0.
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The next theorem shows that under some suitable conditions, the α-well-posed of (SQEP)
is equivalent to the existence and uniqueness of its solutions.

Theorem 3.3 Let X and Y be two finite dimensional spaces. Suppose that the following
conditions hold:

(i) set-valued mappings S and T are nonempty convex-valued, closed, lower semicontin-
uous and subcontinuous on C × D;

(ii) the functions f and g are continuous on C × D;
(iii) for any y ∈ D, the function f (·, y) is convex on C; for any x ∈ C, function g(x, ·) is

convex on D;
(iv) Mε is nonempty bounded for some ε > 0.

Then, (SQEP) is α-well-posed if and only if (SQEP) has a unique solution.

Proof The necessity of theorem is obvious. In order to prove the sufficiency, let (x0, y0) be
the unique solution of (SQEP) and {(xn, yn)} be an α-approximating sequence for (SQEP).
Then there exists a sequence εn > 0 with εn → 0 such that,

d(xn, S(xn, yn)) ≤ εn, and f (xn, yn) − f (z, yn) ≤ εn + α

2
‖xn − z‖2, ∀z ∈ S(xn, yn),

d(yn, T (xn, yn)) ≤ εn, and g(xn, yn) − g(xn, w) ≤ εn + α

2
‖yn − w‖2, ∀w ∈ T (xn, yn).

which means {(xn, yn)} ⊂ Mεn , ∀n ∈ N . Let ε > 0 be such that Mε is nonempty bounded.
Then there exists n0 ∈ N such that {(xn, yn)} ⊂ Mεn ⊂ Mε for all n ≥ n0. Thus, {(xn, yn)}
is bounded and so the sequence {(xn, yn)} has a subsequence {(xnk , ynk )} which converges to
(x1, y1). Reasoning as in Theorem 3.2, one proves that (x1, y1) solves (SQEP). The unique-
ness of the solution implies that (x0, y0) = (x1, y1), and so the whole sequence {(xn, yn)}
converges to (x0, y0). Thus, (SQEP) is α-well-posed. This completes of the proof. �

Example 3.3 Let C = D = [0,+∞). Let S(x, y) = [0, x], T (x, y) = [0, y], f (x, y) =
x2 − y2 and g(x, y) = y2 − x2 for all x ∈ C, y ∈ D. Clearly, the conditions (i)–(iv) of
Theorem 3.3 are satisfied, and (SQEP) has a unique solution (x0, y0) = (0, 0). By Theorem
3.3, (SQEP) is α-well-posed.

4 Metric characterizations of α-well-posedness in the generalized sense for (SQEP)

In this section, we derive some metric characterizations of α-well-posedness in the general-
ized sense for (SQEP) by considering the non-compactness of approximate solution set.

Theorem 4.1 (SQEP) is α-well-posed in the generalized sense if and only if the solution set
� of (SQEP) is nonempty compact and

e(Mε, �) → 0 as ε → 0. (4.1)

Proof Suppose that (SQEP) is α-well-posed in the generalized sense. Then � is nonempty.
To show � is compact, let {(xn, yn)} ⊂ �. Clearly, if {(xn, yn)} is an approximation sequence
of (SQEP), then it is also α-approximation sequence. Since (SQEP) is α-well-posed in the
generalized sense, it contains a subsequence strongly converging to a point of �. Thus, �

is compact. Now, we prove (4.1) holds. Suppose by contradiction that there exist γ > 0,
εn → 0, and (xn, yn) ∈ Mεn such that

d((xn, yn), �) ≥ γ. (4.2)
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Being {(xn, yn)} ⊂ Mεn , {(xn, yn)} is an α-approximating sequence for (SQEP). Since
(SQEP) is α-well-posed in the generalized sense, there exists a subsequence {(xnk , ynk )}
of {(xn, yn)} strongly converging to some point of �. This contradicts (4.2) and so (4.1)
holds.

To prove the converse, suppose that � is nonempty compact and (4.1) holds. Let {(xn, yn)}
be an α-approximating sequence for (SQEP). Then {(xn, yn)} ⊂ Mεn , and so e(Mεn , �) → 0.
This implies that there exists a sequence {(zn, wn)} ⊂ � such that

d((xn, yn), (zn, wn)) → 0.

Since � is compact, there exists a subsequence {(zn j , wn j )} of {(zn, wn)} strongly converg-
ing to (x0, y0) ∈ �. Hence the corresponding subsequence {(xn j , yn j )} of {(xn, yn)} strongly
converges to (x0, y0). Therefore, (SQEP) is α-well-posed in the generalized sense. �


The following example shows that the compactness condition in Theorem 4.1 is essential.

Example 4.1 Let C = D = [0,+∞). Let S(x, y) = [x, x + y], T (x, y) = [y, x + y] and
f (x, y) = g(x, y) = xy for all x ∈ C, y ∈ D. Then � = Mε = [0,+∞) × [0,+∞).
It follows that e(Mε, �) → 0 as ε → 0. Clearly, the diverging sequence {(n, n)}n∈N is an
α-approximating sequence, but it has no convergent subsequence. Therefore, (SQEP) is not
α-well-posed in the generalized sense.

Theorem 4.2 Assume that the following conditions hold:

(i) set-valued mappings S and T are nonempty convex-valued, (s, w)-closed, (s, s)-lower
semicontinuous and (s, w)-subcontinuous on C × D;

(ii) functions f and g are continuous on C × D;
(iii) for any y ∈ D, the function f (·, y) is convex on C; for any x ∈ C, the function g(x, ·)

is convex on D.

Then, (SQEP) is α-well-posed in the generalized sense if and only if

Mε �= ∅, ∀ε > 0, and lim
ε→0

µ(Mε) = 0. (4.3)

Proof Suppose that (SQEP) is α-well-posed in the generalized sense. By the same arguments
as in Theorem 4.1, � is nonempty compact, and e(Mε, �) → 0 as ε → 0. Clearly Mε �= ∅
for any ε > 0, since � ⊂ Mε. Observe that for any ε > 0, we have

H(Mε, �) = max{e(Mε, �), e(�, Mε)} = e(Mε, �).

Since � is compact, µ(�) = 0 and the following relation holds (see for example [8]):

µ(Mε) ≤ 2H(Mε, �) + µ(�) = 2H(Mε, �) = 2e(Mε, �),

It follows that (4.3) holds.
Conversely, suppose that (4.3) holds. It is easy to prove that Mε, for any ε > 0, is closed.

Note that Mε ⊂ Mε′ whenever ε < ε′, their intersection M is nonempty, compact and
satisfies: limε→0 H(Mε, M) = 0 ([20], p. 412), where

M =
{
(x0, y0)∈C × D

∣∣∣∣ x0∈S(x0, y0), f (x0, y0)− f (z, y0) ≤ α
2 ‖x0 − z‖2, ∀z∈S(x0, y0)

y0∈T (x0, y0), g(x0, y0)−g(x0, w) ≤ α
2 ‖y0 − w‖2, ∀w∈T (x0, y0)

}
.

By Lemma 2.1, we obtain that M coincides with solution set � of (SQEP). Thus, � is
compact.
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Let {(xn, yn)} be an α-approximating sequence for (SQEP). Then there exists a sequence
εn > 0 with εn → 0 such that

d(xn, S(xn, yn)) ≤ εn, and f (xn, yn) − f (z, yn) ≤ εn + α

2
‖xn − z‖2, ∀z ∈ S(xn, yn),

d(yn, T (xn, yn)) ≤ εn, and g(xn, yn)−g(xn, w) ≤ εn + α

2
‖yn−w‖2, ∀w ∈ T (xn, yn).

Thus {(xn, yn)} ⊂ Mεn . It follows from (4.3) that there exists a sequence {(zn, wn)} ⊂ �

such that

‖(xn, yn) − (zn, wn)‖ = d((xn, yn), �) ≤ e(Mεn , �) = H(Mεn , �) → 0.

Since � is compact, there exists a subsequence {(znk , wnk )} of {(zn, wn)} strongly converg-
ing to (x0, y0) ∈ �. Hence, the corresponding subsequence {xnk , ynk } of {(xn, yn)} strongly
converges to (x0, y0). Thus, (SQEP) is α-well-posed in the generalized sense. �

Example 4.2 Let C = D = [0, 1]. Let S(x, y) = [0, x], T (x, y) = [0, y] and f (x, y) =
g(x, y) = −xy for all x ∈ C, y ∈ D. Obviously, the conditions (i)–(iii) of Theorem 4.2
are satisfied, and Mε = [0, 1] × [0, 1]. By Theorem 4.2, (SQEP) is α-well-posed in the
generalized sense.

We now give a sufficient condition for the α-well-posedness in the generalized sense of
(SQE) in finite dimensional spaces.

Theorem 4.3 Let X and Y be two finite dimensional spaces. Suppose that the following
conditions hold:

(i) set-valued mappings S and T are nonempty convex-valued, closed, lower semicontin-
uous and subcontinuous on C × D;

(ii) functions f and g are continuous on C × D;
(iii) for any y ∈ D, the function f (·, y) is convex on C; for any x ∈ C, the function g(x, ·)

is convex on D;
(iv) Mε is nonempty bounded for some ε > 0.

Then, (SQEP) is α-well-posed in the generalized sense.

Proof Let {(xn, yn)} be an α-approximating sequence for (SQEP). Then there exists a se-
quence εn > 0 with εn → 0 such that

d(xn, S(xn, yn)) ≤ εn, and f (xn, yn) − f (z, yn) ≤ εn + α

2
‖xn − z‖2, ∀z ∈ S(xn, yn),

d(yn, T (xn, yn)) ≤ εn, and g(xn, yn) − g(xn, w) ≤ εn + α

2
‖yn − w‖2, ∀w ∈ T (xn, yn).

As proved in Theorem 3.3, {(xn, yn)} is bounded. Then there exists a subsequence {(xnk , ynk )}
of {(xn, yn)} which converges to (x0, y0). Reasoning as in Theorem 3.2, one prove that
(x0, y0) solves (SQEP). Therefore, (SQEP) is α-well-posed in the generalized sense. �

The following example shows that the condition (iv) in Theorem 4.3 is essential.

Example 4.3 Let C = D = [0,+∞). Let S(x, y) = [0, x], T (x, y) = [0, y] and f (x, y) =
g(x, y) = 0 for all x ∈ C, y ∈ D. It is easy to see that the conditions (i)–(iii) of Theorem
4.3 are satisfied. But Mε = [0,+∞) × [0,+∞) is unbounded. Therefore, (SQEP) is not
α-well-posed in the generalized sense.
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5 Conclusion

In this paper, we generalize the concept of α-well-posedness to symmetric quasi-equilibrium
problems which includes equilibrium problems, Nash equilibrium problems, quasivariational
inequalities, variational inequalities and fixed point problems as special cases. Under some
suitable conditions, we get some metric characterizations of α-well-posedness for symmetric
quasi-equilibrium problems in Banach spaces. The results presented in this paper generalize
and improve some known results due to Ceng et al. [5], Ceng and Yao [4], Fang et al. [10],
Fang et al. [11], Lignola [23], and Lignola and Morgan [26].

(1) If S(x, y) = C , T (x, y) = D for all (x, y) ∈ C × D, then the α-well-posed for (SQEP)
was investigated by Lignola and Morgan [26];

(2) If X = Y , S(x, y) = C = D, T (x, y) = 0, g(x, y) = 0 for all (x, y) ∈ C × D, x0 = y0

and f (x0, y0) = 0, then the well-posed for (SQEP) was studied by Fang et al. [10];
(3) If X = Y , C = D, S(x, y) = S(x), T (x, y) = 0, g(x, y) = 0 for all (x, y) ∈ C × D,

x0 = y0, and f (x, y) = 〈u,−η(y, x)〉+ h(x)− h(y) for all (x, y) ∈ C × C with some
u ∈ Ay, where η : C × C → X with η(x, x) = 0, A : C → 2X∗

and h : C → R are
three mappings, and X∗ denotes the dual space of X , then the well-posed for (SQEP)
was considered by Ceng et al. [5];

(4) If X is a Hilbert space, X = Y = C = D, S(x, y) = X , T (x, y) = 0, g(x, y) = 0
for all (x, y) ∈ C × D, x0 = y0, and f (x, y) = 〈Fu, x − y〉 + h(x) − h(y) for all
(x, y) ∈ X × X with some u ∈ Ay, where F : X → X , A : X → 2X and h : X → R
are three mappings, then the well-posed for (SQEP) was investigated by Ceng and Yao
[4];

(5) If X is a Hilbert space, X = Y = C = D, S(x, y) = X , T (x, y) = 0, g(x, y) = 0
for all (x, y) ∈ C × D, x0 = y0, and f (x, y) = 〈Fy, x − y〉 + h(x) − h(y) for all
(x, y) ∈ X × X , where F : X → X and h : X → R are two mappings, then the
well-posed for (SQEP) was studied by Fang et al. [11];

(6) If X = Y , C = D, S(x, y) = S(x), T (x, y) = 0, g(x, y) = 0 for all (x, y) ∈ C × D,
x0 = y0, and f (x, y) = 〈Fy, y − x〉 for all (x, y) ∈ X × X , where F : X → X∗
and X∗ denotes the dual space of X , then the well-posed for (SQEP) was considered
by Lignola [23].
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